ON SOME FUNCTIONAL EQUATIONS

(0 NEKOTORYKH FUNKTSIONAL' NYKH URAVNENIIAKH)

PMM Vol.24, No.5, 1960, pp. 964-967
I. M. MINKOV
(Leningrad)
(Received 31 March 1960)

1. Many problems of mathematical physics can be reduced to the problem of finding an unknown function X_{n} (of the integer argument n) which satisfies two functional equations of the form

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} X_{n} Q_{n} \varphi_{n}(x)=f(x) & (0<x<a) \tag{1}\\
\sum_{n=0}^{\infty} X_{n} R_{n} \varphi_{n}(x)=h(x) & (a<x<b)
\end{array}
$$

Here, $f(x)(0 \leqslant x \leqslant a)$ and $h(x)(a \leqslant x \leqslant b)$ are given functions of x; Q_{n} and R_{n} are known functions of the index n, while $\phi_{n}(x)(n=0,1 \ldots)$ is a system of functions which is complete in $L^{2}[0, b]$. In a recent work by Cook and Tranter [1] the particular case of Equations (1) is investigated when

$$
R_{n}=1 \quad(n=0,1, \ldots), \quad Q_{n}=\alpha_{n}^{p} \quad(-1 \leqslant p \leqslant 1), \quad \varphi_{n}(x)=J_{v}\left(\alpha_{n} x\right)
$$

where J_{ν} is the Bessel function of order $\nu(\nu>-1), a_{n}$ is a positive root of the equation $J_{\nu}\left(a_{n} b\right)=0$. In this note we shall consider another special case

$$
\begin{array}{ll}
\sum_{n=0}^{\infty} X_{n}\left(1 \pm M_{n}\right) P_{n}(\cos v)=f(v) & (0<v<\alpha) \\
\sum_{n=0}^{\infty} X_{n}(n+1 / 2) P_{n}(\cos v)=h(v) & (\alpha<v<\pi) \tag{2}
\end{array}
$$

where $P_{n}(\cos \nu)$ are Legendre polynomials. It is assumed that the functions $f(\nu)(0 \leqslant \nu \leqslant a)$ and $h(\nu)(a \leqslant \nu \leqslant \pi)$ have continuous second-order derivatives on the indicated intervals and that the quantity M_{n} is
bounded and decreases (as n approaches infinity) not slower than

$$
O\left(1 / n^{2+z}\right)(e>0)
$$

Note that without loss of generality one may assume in (2) that $h(\nu) \equiv 0$ since the case $h(\nu) \neq 0$ can be reduced to the case $h(\nu) \equiv 0$ by a known transformation [2].

In the sequel we give a special method for solving Equation (2) which makes it possible to express X_{n} in quadratures by means of an auxiliary function which is the solution of a homogeneous Fredholm integral equation with a continuous kernel; hereby we make use of certain ideas presented in [3].
2. We shall try to find a solution of Equations (2) (under the condition that $h(\nu) \equiv 0$) of the form

$$
\begin{equation*}
X_{n}=\int_{0}^{\alpha} \psi(\eta) \cos \left(n+\frac{1}{2}\right) \eta d n \tag{3}
\end{equation*}
$$

where $\psi(\eta)$ is an auxiliary function having a continuous derivative on the interval [$0, a]$. For such a choice of the quantity X_{n}, the second equation in (2) is satisfied identically. One can easily verify this by integrating by parts the integral in (3) and making use of the next equations [5]:

$$
\sum_{n=0}^{\infty} \sin \left(n+\frac{1}{2}\right) \eta P_{n}(\cos v)=\left\{\begin{array}{cc}
0 & (0 \leqslant \eta<v<\pi) \\
\frac{1}{\sqrt{2(\cos v-\cos \eta)}} & (0<v<\eta<\pi)
\end{array}\right.
$$

In order to find the function $\psi(\eta)$, we substitute Formula (3) into the first equation of (2), and obtain

$$
\sum_{n=0}^{\infty}\left(1 \pm M_{n}\right) P_{n}(\cos v) \int_{0}^{\alpha} \psi(\eta) \cos \left(n+\frac{1}{2}\right) \eta d \eta=f(v) \quad(0<v<\alpha)
$$

But $[4,5]$

$$
\sum_{n=0}^{\infty} \cos \left(n+\frac{1}{2}\right) \eta P_{n}(\cos v)=\left\{\begin{array}{cl}
\frac{1}{\sqrt{2(\cos \eta-\cos v)}} & (0 \leqslant \eta<v<\pi) \\
0 & (0<v<\eta<\pi)
\end{array}\right.
$$

Furthermore [4].

$$
P_{n}(\cos v)=\frac{2}{\pi} \int_{0}^{v} \frac{\cos (n+1 / 2) \eta d \eta}{\sqrt{2(\cos \eta-\cos v)}}
$$

Therefore, the first of the equations of (2) will take the form

$$
\begin{align*}
\int_{0}^{\nu} \frac{\psi(\eta) d \eta}{\sqrt{2(\cos \eta-\cos v)}} & \pm \frac{2}{\pi} \sum_{n=0}^{\infty} M_{n} \int_{0}^{\nu} \frac{\cos (n+1 / 2) \eta d \eta}{\sqrt{2(\cos \eta-\cos v)}} \int_{0}^{\alpha} \psi(t) \cos \left(n+\frac{1}{2}\right) t d t \\
& =\int_{0}^{\nu} \frac{g(\eta) \sec ^{1 / 2} \eta d \eta}{\sqrt{2(\cos \eta-\cos v)}} \quad(0<v<\alpha) \tag{4}
\end{align*}
$$

Here, the function $g(\eta)$ is determined by means of the integral equation

$$
\begin{equation*}
\int_{0}^{v} \frac{g(\eta) \sec ^{1} / 2 \eta d \eta}{\sqrt{2(\cos \eta-\cos v)}}=f(v) \quad(0 \leqslant v \leqslant \alpha) \tag{5}
\end{equation*}
$$

Setting $g(\eta)=G(\tan \eta / 2), f(\nu)=F(\tan +\nu / 2)$, and making the substitution $r=\tan \eta / 2, s=\tan \nu / 2$, we derive the integral equation

$$
\int_{0}^{s} \frac{G(\tau) d \tau}{\sqrt{s^{2}-\tau^{2}}}=\frac{F(s)}{\sqrt{1+s^{2}}} \quad\left(0 \leqslant s \leqslant \tan \frac{1}{2} \alpha\right)
$$

from which we obtain $G(r)$ by the formula [6]

$$
G(\tau)=\frac{2}{\pi} F(0)+\frac{2 \tau}{\pi} \int_{0}^{\tau}\left(\frac{F^{\prime}(s)}{\sqrt{1+s^{2}}}-\frac{s F(s)}{\sqrt{\left(1+s^{2}\right)^{3}}}\right) \frac{d s}{\sqrt{\tau^{2}-s^{2}}} \quad\left(0 \leqslant \tau \leqslant \tan \frac{1}{2} \alpha\right)
$$

Let us introduce the notation

$$
\sum_{n=0}^{\infty} M_{n} \cos \left(n+\frac{1}{2}\right) y=K(y)
$$

It is obvious that because of the assumption on the nature of the decrease of M_{n} at infinity, the function $K(y)$ and its derivative will be continuous. With the new notation, Formala (4) can be transformed into

$$
\begin{gathered}
\int_{0}^{\nu} \frac{d \eta}{\sqrt{2(\cos \eta-\cos v)}}\left\{\psi(\eta) \pm \frac{1}{\pi} \int_{0}^{\alpha} \psi(t)[K(\eta-t)+K(\eta+t)] d t-g(\eta) \sec \frac{1}{2} \eta\right\}=0 \\
(0<v<\alpha)
\end{gathered}
$$

The last equation will be satisfied for all ν if the function $\psi(\eta)$ is a solution of the homogeneous Fredholm integral equation with the continuous kernel $K(\eta-t)+K(\eta+t)$:

$$
\begin{equation*}
\psi(\eta) \pm \frac{1}{\pi} \int_{0}^{\alpha} \psi(t)[K(\eta-t)+K(\eta+t)] d t=g(\eta) \sec \frac{1}{2} \eta \quad(0 \leqslant \eta \leqslant \alpha) \tag{6}
\end{equation*}
$$

There exist well-developed methods for solving such equations [7]. If $\psi(n)$ is known, X_{n} is determined by Formula (3).

We note that the presented formal derivations can all be justified on the basis of the actual properties of ψ.
3. As an example, let us consider a problem in electrostatics. Suppose we are required to find the electric field of a system of conductors which consists of a sphere S and of a non-closed spherical surface S_{1}; the sphere and surface are assumed to be concentric as shown in the figure. The spherical surface S_{1} is charged and has a potential V, the

sphere has zero potential. The determination of the electric field can be reduced, as is well known, to the finding of the potential U satisfying the Laplace equation $\Delta U=0$ and the boundary conditions

$$
U=0 \quad \text { on } S, \quad U=V \quad \text { on } S_{1}, \quad U=0 \quad \text { on } \infty
$$

We shall look for a solution in spherical coordinates of the form

$$
U=\left\{\begin{array}{l}
\sum_{n=0}^{\infty} X_{n}\left(\frac{r}{r_{2}^{n}}-\beta^{2 n+1} \frac{r^{-n-1}}{r_{2}^{-n-1}}\right) P_{n}(\cos v) \quad\left(r_{1}<r<r_{2}\right) \tag{7}\\
\sum_{n=0}^{\infty} X_{n}\left(1-\beta^{2 n+1}\right) \frac{r^{-n-1}}{r_{2}-n-1} P_{n}(\cos v) \quad\left(r>r_{2}\right)
\end{array}\right.
$$

where r and ν are spherical coordinates, r_{1} is the radius of the sphere $S ; r_{2}$ is the radius of the surface $S_{1}, \beta=r_{1} / r_{2}<1$ and X_{n} is the sought function. The function U defined by Equations (7) satisfies formally Laplace's equation and the boundary condition $U=0$ on S^{\prime}; and is continuous in the entire space including the surface S_{1}.

From the boundary condition $U=V$ on S_{1}, and from the condition that the normal derivative of the potential U be continuous on the remaining part of the surface r_{2}, one can obtain functional equations for the determination of X_{n} :

$$
\begin{align*}
& \sum_{n=0}^{\infty} X_{n}\left(1-\beta^{2 n+1}\right) P_{n}(\cos v)=V \quad(0<v<\alpha) \tag{8}\\
& \sum_{n=0}^{\infty} X_{n}\left(n+\frac{1}{2}\right) P_{\dot{n}}(\cos v)=0 \quad(\alpha<v<\pi)
\end{align*}
$$

These equations are particular cases of Equation (2) when

$$
M_{n}=\beta^{2 n+1}, \quad f(v)=V, \quad h(v)=0
$$

We have $[4,6]$

$$
K(y)=\beta\left(1-\beta^{2}\right) \frac{\cos ^{1} / 2 y}{1-2 \beta^{2} \cos y+\beta^{4}}, \quad g(\eta)=\frac{2 V}{\pi} \cos ^{2} \frac{\eta}{2}
$$

It is not difficult to show that the function $\psi(n)$ is an even function. The integral equation for its determination, therefore, can be written in the form

$$
\begin{equation*}
\psi(\eta)=\frac{\beta\left(1-\beta^{2}\right)}{\pi} \int_{-\alpha}^{\alpha} \frac{\psi(t) \cos ^{1} / 2(\eta-t) d t}{1-2 \beta^{2} \cos (\eta-t)+\beta^{4}}+\frac{2 V}{\pi} \cos \frac{\eta}{2} \quad(-\alpha \leqslant \eta \leqslant \alpha) \tag{9}
\end{equation*}
$$

Let λ be the first characteristic number of the corresponding homogeneous equation. On the basis of a well-known estimate $|\lambda| \geqslant 1 / M$, where

$$
M=\max _{-\alpha \leqslant n \leqslant \alpha} \int_{-\alpha}^{\alpha}\left|\frac{\cos ^{1} / 2(\eta-t)}{1-2 \beta^{2} \cos (\eta-t)+\beta^{4}}\right| d t=\frac{2}{\beta\left(1-\beta^{2}\right)} \tan ^{-1}\left[\frac{2 \beta}{1-\beta^{2}} \sin \frac{1}{2} \alpha\right]
$$

we obtain

$$
|\lambda| \geqslant \frac{\beta\left(1-\beta^{2}\right)}{2 \tan ^{-1}\left\{\left[2 \beta /\left(1-\beta^{2}\right)\right] \sin 1 / 2 \alpha\right\}}
$$

But for all values of β such that $0<\beta<1$, we have

$$
\frac{\beta\left(1-\beta^{2}\right)}{\pi}<\frac{\beta\left(1-\beta^{2}\right)}{2 \tan ^{-1}\left\{\left[2 \beta /\left(1-\beta^{2}\right)\right] \sin 1 / 2 \alpha\right\}}
$$

Hence, Equation (9) is always solvable by the method of successive approximations.

BIBLIOGRAPHY

1. Cooke, J.C. and Tranter, C.J., Dual Fourier-Bessel series. Quart. J. Mech. and Appl. Math. 12, 3, 1959.
2. Gordon, A.N., Dual integral equations. J. London Math. Soc. Vol. 29, No. $3,1954$.
3. Lebedev, N. N., Raspredelenie elektrichestva na tonkom paraboloidal'nom segmente (Distribution of electricity on a thin paraboloidal segment). Dokl. Akad. Nauk SSSR Vol. 117, No. 3, 1957.
4. Ryzhik, I.M. and Gradshtein, I.S., Tablitsy integralov, summ, riadov i proizuedenii (Tables of Integrals, Sums, Series and Products). GITTL, 1951.
5. Ferrers, N., On the distribution of electricity on a bowl. Quart. J. of Pure and Appl. Math. Vol. 18, 1882.
6. Collins, W. D. , On the solution of some axisymmetric boundary-value problems by means of integral equations. Quart. J. Mech. and Appl. Math. 12, 2, 1959.
7. Mikhlin, S.G., Integral'nye uravneniia (Integral Equations). Gostekhizdat, 1959.
