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1. Many problems of mathematical physics can be reduced to the problem of 

finding an unknown function X,, (of the integer argument n) which satis- 

fies two functional equations of the form 

X,,Q, ‘P,, (4 = f (4 (0 < 2 < a) 

*=0 

5l 
(1) 

X&v, (4 = h (4 (a < z < b) 
II=0 

Here, f(z) (0 Q x < a) and h(x) (a < L < b) are given functions of r; 

Q, and Rn are known functions of the index n. while 46,(z) (n = 0. 1 . . .1 

is a system of functions which is complete in L2 [ 0, bl . In a recent work 

by Cook and Tranter [l I the particular case of Equations (1)is investf- 
gated when 

R,=1 (n=O, I,...), Q, = a,,’ (---ldPflh ‘P, (4 = J, (a,4 

where J,, is the Bessel function of order v (v > -1). an is a positive 

root of the equation J,,(a,b) = 0. In this note we shall consider another 

special case 

i x, (1 f M,) P, (cos v) = f(v) 

T&=0 

i x, (n + l/2) P, (cos V) = h (V) 

n==o 

(0 < v < a) 

(a < v -c IX) 

(2) 

where Pn (cos u) are Legendre polynomials. It is assumed that the func- 

tions f(v) (0 Q v < a) and h(v) (a <w < n) have continuous second-order 

derivatives on the indicated intervals and that the quantity M,, is 
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bounded and decreases (as n approaches infinity) not slower than 

0 (i/n2+‘) (e > 0) 

Note that without loss of generality one may assume in (2) that 

h(v) = 0 since the case h(v) f 0 CFUI be reduced to the case h(v) e 0 by 

a known transformation [ 2 1 . 

In the sequel we give a special method for solving Equation (2) which 

makes it possible to express X, in quadratures by means of an auxiliary 

function which is the solution of a homogeneous Fredholm integral equa- 

tion with a continuous kernel; hereby *we make use of certain ideas pre- 

sented in [ 3 1 . 

2. We shall try to find a solution of Equations (2) (under the condi- 

tion that h(v) G 0) of the form 

a. 
X,- q(q)cos n 1-t qdn 

s ( ) (3) 

0 

where I&V) is an auxiliary function having a continuous derivative on the 

interval [ 0, a], For such a choice of the quantity X,, the second equa- 

tion in (2) is satisfied identically. One can easily verify this by inte- 

grating by parts the integral in (3) and making use of the next equations 

[51i 

jj sin (n + +) q P, (CO9 V) = I 

0 (O<~<VY<n) 

1 

n=o ’ I v/a (cos Y - cus q) 

In order to find the function I&), we substitute 

the first equation of (2), and obtain 

i (I * M,,) P, (CM V) = 11 (q) cos (n + -+) qdq = f(y) 
s 

n=0 0 

But [ 4.5 1 

(O<v<q<N 

Formula (3) into 

(0 -c v < a) 

?L=0 

Furthermore [ 4 1, 
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Therefore, the first of the equations of (2) will take the form 

Y 

s g trl) set *iz M 
= o r/ i (cos q - cos v) 

(0 < v < a) (4) 

Here, the function g(q) is determined by means of the integral ewa- 

tion 

g (rl) eec VZ rdrl = f (W (0 d v < 4 
2 (cos q - cos v) 

Setting g(v) = G(tan 77/2), f(v) = F(tan+ v/2), and making the 
tion r = tan q/2, s = tan v/2, we derive the integral equation 

(5) 

substitu- 

from which we obtain G(r) by the formula [ 6 1 
7 

G (T) = f F (0) + $ 
( 

O<z<‘“$a) 

Let us introduce the notation 

-j M, cm (n+$) y = K ty) 
n=o 

It is obvious that because of the assumption on the nature of the de- 
crease of Mn at infinity, the function K(y) and its derivative will be 
continuous. With the new notation, Formula (4) can be transformed into 

Q (0 [K (q - t) +K (rl + t)l dt - g (q) set -$- q’ = 0 
1 

(0 < v < a) 

The last equation will be satisfied for all v if the function $(q) is 
a solution of the homogeneous Fredholm integral equation with the con- 
tinuous kernel K(v - t) + K(TJ + t): 

II(q) 5 f i ‘II, W [K (9 - t) + K (11 + t)l dt = g (d set + rl (0 el< 4 (‘5) 
0 
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There exist well-developed methods for solving such equations [71r If 
$(n) is known, X, is determined by Formula (3). 

We note that the presented formal derivations can all be justified on 
the basis of the actual properties of $. 

3. As an example, let us consider a problem in electrostatics. Suppose 
we are required to find the electric field of a system of conductors 
which consists of a sphere S and of a non-closed spherical surface Sl; 
the sphere and surface are assumed to be concentric as shown in the 
figure. The spherical surface SI is charged and has a potential V, the 

sphere has zero potential. The determination of the electric field can 

be reduced, as is well known, to the finding of the potential U satisfy- 
ing the Laplace equation AU = 0 and the boundary conditions 

U =O on S, u = V on s1, U=Q once 

We shall look for a solution in spherical coordinates of the form 

00 r-"-l 

I 2 ( x, L- - PS-l -pyq 
r2n ! P, (cos Y) (rl -=z r < r2) 

u = n=o 
(7) 

I -g x, (I- p2n+1 
r--n--l 

1 r2-71__1 p,, (COSY) (r > r2) 

u=o 

where r and v are spherical coordinates, rI is the radius of the sphere 
S; r2 is the radius of the surface SI, @ = ‘I/r2 < 1 and X, is the sought 
function. The function FJ defined by Equations (7) satisfies formally 
Laplace’s equation and the boundary condition [I = 0 on S’. and is con- 
tinuous in the entire space including the surface SI. 
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From the boundary condition U = V on S,, and from the condition that 
the normal derivative of the potential [I be continuous on the remaining 

part of the surface r2, one can obtain functional equations for the de- 
termination of X : n 

5 x, (i- P zn+l) P, (cm Y) = v (0 < v < co 

n=o 

&,(n++)P*(eosv)=O (U<Y<a-c) 

n=o 

(8) 

These equations are particular cases of Equation (2) when 

We have [ 4.6 1 

M, = p2n+1, f(Y) = v, h (Y) = 0 

K (Y) = P (1 - P”) cos ‘I2 y 2v 
1 - 2pz cos y + p” ’ 

g (q) = - COG + 
2-c 

It is not difficult to show that the function fi(n) is an even func- 
tion. The integral equation for its determination, therefore, can be 
written in the form 

$ (q) = P (1 - P2) a s $ (t) ccc3 l/2 (q - t) dt 

1 - 2b” cos (n - t) + 84 
+ ‘G cos + (- a < u < a) PI 

n 
--oL 

Let x be the first characteristic number of the corresponding homo- 
geneous equation. On the basis of a well-known estimate 1x1 > l/M, where 

a 
coa l/2 (q - t) dt= 2 tan-’ a3 1 sin -a 

1 - 2p” cos (u - t) + p4 P (1 - P2) l-B2 2 
--a 

we obtain 
P (1 - P2) 

’ A ’ > 2 tan-1 {[2p / (1 - p2)] sin 1/2 a) 

But for all values of p such that 0 < p < 1. we have 

P (1 - P”) < P (1 - P2) 
SC 2 tan-l {[2p / (1 - P2)1 sin I/Z a) 

Hence, Equation (9) is always solvable by the method 
approximations. 

of successive 
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